Aloe-emodin induced in vitro G2/M arrest of cell cycle in human promyelocytic leukemia HL-60 cells.

Chen HC¹, Hsieh WT, Chang WC, Chung JG. Food Chem Toxicol. 2004 Aug;42(8):1251-7.

Author information

1

Department of Pharmcology, China Medical University, 91 Hsueh-Shih Road, Taichung 404, Taiwan, ROC.

Abstract

In this study, we have evaluated the chemopreventive role of aloe-emodin in human promyelocytic leukemia HL-60 cells in vitro by studying the regulation of proliferation, cell cycle and apoptosis. Aloe-emodin inhibited cell proliferation and induced G2/M arrest and apoptosis in HL-60 cells. Investigation of the levels of cyclins B1, E and A by immunoblot analysis showed that cyclin E level was unaffected, whereas cyclin B1 and A levels increased with aloe-emodin in HL-60 cells. Investigation of the levels of cyclin-dependent kinases, Cdk1 and 2, showed increased levels of Cdk1 but the levels of Cdk2 were not effected with aloeemodin in HL-60 cells. The levels of p27 were increased after HL-60 cells were cotreated with various concentrations of aloe-emodin. The increase of the levels of p27 may be the major factor for aloe-emodin to cause G2/M arrest in these examined cells. Flow cytometric assays and DNA fragmentation gel electrophoresis also confirmed aloe-emodin induced apoptosis in HL-60 cells. The levels of caspase-3 were increased after HL-60 cells were cotreated with 10 microM aloe-emodin for 12, 24, 48, and 72 hours. Taken together, aloeemodin therefore appears to exert its anticarcinogenesis properties by inhibiting proliferation and inducing cell cycle arrest and apoptosis underwent activation of caspase-3 in human leukemia HL-60 cells.

PMID:

15207375