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Constitutively expressed cyclooxygenase-2 (COX-2) is a 
marker of tumor cell aggressiveness. Inducible COX-2 has also 
been described in cancer cells and localizes in the cancer cell 
nucleus, where formation of a complex of mitogen-activated 
protein kinase (MAPK) and COX-2 is antecedent to p53-depen-
dent apoptosis. The stilbene resveratrol is a model pharmacologic 
activator of this pro-apoptotic mechanism. Physiological concen-
trations of thyroid hormone are anti-apoptotic in several types 
of tumor cells. A mechanism by which the hormone is anti-
apoptotic is disruption of the nuclear MAPK-COX-2 complex. 
We review here the apoptosis-relevant effects of resveratrol and 
thyroid hormone and then speculate about the significance 
of convergence of these actions in cancer cells in the intact 
organism. Clinical activity of resveratrol may be modulated 
by normal tissue levels of endogenous thyroid hormone, and 
hypothyroidism in the cancer patient—whether spontaneous or 
induced by chemotherapeutic agents—may permit full expres-
sion of the apoptotic activity of the administered stilbene. 
Chronic pharmacologic inhibition of COX-2 may oppose the 
pro-apoptotic effect of resveratrol.

Cyclooxygenase and Resveratrol

The biochemical and pharmacological distinctions between 
cyclooxygenase (COX)-1 and COX-2 activities and the regula-
tion of such activities that result in local prostaglandin (PG) 
production from arachidonic acid (AA) are well-described in 
inflammatory cells.1 There has been much recent interest in the 
observation that constitutive COX-2 gene expression in cancer 
cells appears to predict aggressiveness of tumors. A clinical 
corollary of this observation is the possibility that nonsteroidal 

anti-inflammatory drug (NSAID) therapy that inhibits COX-2 
activity may improve the clinical behavior of COX-2-expressing 
cancer.2-5

Our laboratory has shown that it is possible pharmacologi-
cally to induce COX-2 in certain tumor cells. When induced, the 
COX-2 protein translocates to the cell nucleus. In contrast to 
constitutive COX-2 gene expression in cancer cells, this inducible 
form of the cyclooxygenase is pro-apoptotic and may be a clinically 
desirable endpoint in tumor cells. Conceivably, the pharmacologic 
inhibition of the inducible enzyme may be clinically undesirable.

Resveratrol is a widely-studied stilbene that has anti-cancer6-14 
and other biological properties.15-17 The anti-cancer properties 
have been shown to have several mechanisms, one of which is 
induction of apoptosis. This stilbene is naturally occurring and its 
structure is in the public domain. Thus, unmodified resveratrol 
is not of commercial interest for pharmacologic development as 
a cancer chemotherapeutic agent, but reformulated analogues of 
resveratrol are under study.18 We have used unmodified resveratrol 
as a model pharmacologic inducer of COX-2 in cancer cells11,13,14 
and have implicated resveratrol-inducible COX-2 protein upstream 
in p53-dependent apoptosis.11,13,14 We have also shown that a 
receptor for the stilbene exists on integrin αvβ3,10-14 a structural 
protein of the plasma membrane that is critical to cancer and non-
cancer cell interactions with extracellular matrix proteins19-21 and 
with certain growth factors.22-25

Thus, cancer cells may exhibit both constitutive and inducible 
COX-2 protein. These apparently discrete pools reflect different 
roles for the protein in tumor cells and may be different targets for 
manipulation in the setting of cancer.

COX-2 in Tumorigenesis and Angiogenesis

As noted above, constitutive upregulation of COX-2 gene 
expression has been found in a variety of cancers and may index 
invasiveness. These include cancers of the cervix,26 endome-
trium,27,28 prostate29 and breast30,31 where it has been shown 
to play a role in tumorigenesis.31-33 Reports of such constitutive 
expression were initially surprising, given that COX-2 had been 
widely appreciated to be an inducible gene in non-cancer cells. It was 
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expression of CXCR4 in SC-236-treated tumors is detected by 
microarray and confirmed by diminished CXCR4 immunoposi-
tivity in the abnormal, segmentally dilated tumor vessels.45 Lee et 
al. have shown that a specific COX-2 inhibitor, SC-236, disrupts an 
early phase of VMC incorporation in tumor-related blood vessels, 
perhaps by blocking CXCR4-mediated incorporation of early peri-
cytes/vascular mural progenitor cells into xenograft vessels.45

These various studies that link COX-2 and tumorigenesis or 
tumor-related angiogenesis or both are based on the concept of 
constitutive production of the cyclooxygenase by cancer cells. 
While it appears that nuclear COX-2 induced by resveratrol 
opposes the activity of constitutive COX-2 on tumor cell prolifera-
tion,11,13,14 it is not yet known whether the pro-angiogenic activity 
of constitutive COX-2 is affected by the induction of nuclear accu-
mulation of cyclooxygenase.

Functions of Nuclear COX-2 and Protein Complexing

Immunofluorescent studies in murine 3T3 cells and human and 
bovine endothelial cells by Smith et al. have indicated that COX-2 
localizes in the endoplasmic reticulum (ER), Golgi complex 
and nuclear envelope (NE).55,56 Catalytically active COX-1 and 
COX-2 are localized in the nuclear envelope and ER of PGE2-
releasing cells.55,56 More recent studies have suggested that for 
functional coupling and PGE2 biosynthesis, cytosolic PLA2, COXs 
and PGEs appear to be localized in the perinuclear region.57-59

Patel et al. have shown that stimulation of murine RAW 264.7 
macrophages with lipopolysaccharide (LPS) causes 90% of COX-2 
to localize in the nuclear fraction and ~10% in cytoplasm.60 In 
quiescent endothelial cells from human umbilical vein, porcine 
and human cerebral microvessels, COX-2 is also found princi-
pally in the nucleus.61,62 When endothelial cells are treated with 
interleukin (IL)-1β, nuclear COX-2 relocates gradually to the 
nuclear envelope and cytoplasm.62 The functioning of the longer 
C-terminal segment in COX-2 is distinctly more tolerant of 
structural change than the shorter COX-1 C-terminal segment. 
However, C-terminal substitutions or deletions do not change the 
subcellular localization of either isoform, indicating that neither 
of the C-terminal segments contains indispensable intracellular 
targeting signals.63 Mechanisms for inducible COX-2 transloca-
tion to the nucleus are still not clear.

In the plasma membrane, COX-2 and caveolin-3 (Cav-3) 
are co-localized in caveolae, a microdomain in which glyco-
sylphosphatidylinositol (GPI)-anchored proteins reside and form 
a caveolar protein-protein complex in human fibroblasts64 and 
in primary cultures of rat chondrocytes.65 This suggests that the 
caveolins might play a role in the regulation of COX-2 functions.65 
Type IIA secretory phospholipase A2 (sPLA2-IIA) is present in 
caveolae and also in the perinuclear area in proximity to COX-2. 
A GPI-anchored heparan sulfate proteoglycan glypican facilitates 
the trafficking of sPLA2-IIA into particular subcellular compart-
ments, and arachidonic acid thus released from the compartments 
may link efficiently to the downstream COX-2-mediated PG 
biosynthesis.66

Studies by Parfenova et al.62 indicate that nuclear COX-2 in 
vascular endothelial cells is associated with the nuclear matrix that 

then found that COX-2-specific inhibitors that were administered 
for anti-inflammatory purposes incidentally conferred the benefit 
of reducing the likelihood of colon cancer recurrence.34,35 While 
this implied that the prostaglandin (PG) products of the COX-2 
enzymatic activity might support tumor growth, other mechanisms 
are possible. One of these is that the arachidonic (AA) precursors of 
PGs suppressed tumor growth when they accumulated in cells as a 
result of inhibition of the enzymatic activity of COX-2.36-38

Another possible explanation for the anti-cancer effect of phar-
macologic inhibitors of COX-2 is that previously unappreciated 
actions of the cellular COX-2 protein were being modulated by 
the COX-2 inhibitors. That this could be the case is suggested by 
studies of the mechanism by which the stilbene resveratrol induces 
apoptosis in cancer cells, as indicated above. Such studies disclose 
that subcellular distribution of COX-2 in resveratrol-treated cancer 
cells, monitored by confocal microscopy, included the intranuclear 
compartment,13 as well as the perinuclear zone or nuclear enve-
lope.14 The nuclear accumulation of COX-2 is unaffected by 
nonspecific cyclooxygenase inhibitors, but is blocked by treatment 
of cells with a specific pharmacologic COX-2 inhibitor.11,13,14

That COX-2 might also be involved in angiogenesis was appre-
ciated when aspirin, NS398 and NSAIDs were shown to reduce 
angiogenesis in vivo and in vitro.39 NS398 is a specific inhibitor 
of COX-2, whereas aspirin and NSAIDs that are used clinically 
inhibit both COX-1 and COX-2.40,41 COX-2 modulates angio-
genesis by several mechanisms, including stimulating production 
of angiogenic factors, such as vascular endothelial growth factor 
(VEGF)42 and platelet-derived growth factor.43,44 Indeed, there 
may be co-localization of COX-2 and VEGF at the advancing edge 
of tumor cells.43 The interface between COX-2 and molecules 
such as PDGF is known to be relevant to participation of peri-
cytes and vascular mural cells (VMC) in developing vasculature.45 
Targeting of PDGF-β in combination with VEGF has antitumor 
efficacy in experimental models46,47 and pharmacologic COX-2 
inhibition is an additional measure that offers anti-angiogenic and 
anti-proliferative properties.

β-catenin is a multifunctional protein that interacts with many 
proteins, including the sequence-specific DNA binding transcrip-
tion factor TCF and other proteins implicated in transcription 
and chromatin remodeling.48 Cytoplasmic β-catenin is associated 
with COX-2 overexpression, supporting the role of cytoplasmic 
β-catenin in stabilizing COX-2 mRNA.49 Correlation of survivin 
distribution with COX-2 and β-catenin expression patterns is 
observed in colo-rectal cancer. The co-localization of COX-2/β-
catenin/survivin in the same epithelial cells in tumor samples 
lends credence to possible in vivo regulatory effects of COX-2 and 
β-catenin on the intracellular survivin levels in mouse and human 
colon cancer.50

Chemokine receptor CXCR4 is also involved in the homing of 
vascular progenitor cells to sites of active angiogenesis51,52 and the 
receptor also has been shown to be affected by COX-2 inhibition.45 
Activation of this receptor can stimulate the PI3K/Akt pathway 
in a number of cell types.53,54 In endothelium, CXCR4 mediates 
capillary tube formation stimulated by prostaglandin E, an effect 
that is disrupted by cyclooxygenase blockade.52 Significantly lower 
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context serves to serine phosphorylate (activate) the proteins with 
which it is associated. We therefore considered the possibility that, 
following its activation by resveratrol and consequent transloca-
tion to the nucleus, ERK1/2 may play a role in the p53-dependent 
apoptosis that the stilbene induces (see above). Inhibition of 
MAPK activation pharmacologically by PD98059 or inhibition 
of COX-2 by NS398 blocks the nuclear complexing of COX-2, 
phosphorylated p53 and activated ERK1/2.11,13

Thyroid Hormone-Induced Tumor and Endothelial Cell 
Proliferation

Acting via a plasma membrane receptor on integrin αvβ3, 
thyroid hormone (T4 and 3,5,3'-triiodo-L-thyronine, T3) in physi-
ologic concentrations causes proliferation in vitro of several tumor 
cell lines. These cell lines include glial cells,13,82 human estrogen 
receptor (ER)-positive breast cancer (MCF-7) cells,78 lung cancer 
cells,83 thyroid cancer cells12 and head-and-neck cancer cells (HY 
Lin, unpublished observations). While this thyroid hormone 
receptor is on the same integrin as the resveratrol receptor and 
both sites can lead to activation of MAPK, the binding sites are 
discrete.84,85 The thyroid hormone analogue tetrac inhibits the 
cancer cell proliferation activity of T4 and T3. We have also shown 
that thyroid hormone can increase the growth of tumor xenografts, 
e.g., human breast cancer (MCF-7) cells in the nude mouse,85 
an activity that is also blocked by systemic tetrac administration. 
Because the hormone receptor site is at or near the Arg-Gly-Asp 
(RGD) recognition site on integrin αvβ3, the RGD peptide can, 
like tetrac, inhibit the hormone effect on cancer cell proliferation. 
The RGD recognition site is relevant to the interaction of the 
integrin with important extracellular matrix (ECM) proteins and 
growth factors.24,86

Tumor cell proliferation induced by thyroid hormone is 
MAPK/ERK-requiring and an inhibitor of the ERK1/2 signal 
transduction pathway, PD98059, is effective in decreasing the 
proliferative action of the hormone.78,82 The MAPK signal trans-
duction cascade is important to a variety of biologic functions in 
normal cells, however, and the clinical application of a MAPK 
inhibitor to the thyroid hormone effect in cancer cells is likely 
to have an unfavorable side effect profile. It should be noted that 
thyroid hormone can nongenomically activate another important 
cellular signal transduction pathway, the phosphatidylinositol 
3-kinase (PI 3-K) cascade.86,87 However, the PI 3-K pathway 
effect of iodothyronines appears not be relevant to induction by 
the hormone of tumor cell proliferation.86 In non-cancer cells, the 
activation of PI 3-K by thyroid hormone is involved downstream 
in transcription of certain genes that are relevant to carbohydrate 
handling88 and to regulation of plasma membrane Na, K-ATPase 
activity.89

Thyroid hormone has recently been appreciated to be pro-
angiogenic.24,90,91 This action may be desirable in the contexts 
of processes such as wound-healing92,93 or improvement of blood 
flow in ischemic tissues, but is undesirable in the environment of 
cancers. Tetrac is a potent anti-angiogenic agent25,85 and inhibits 
the action of thyroid hormone on new blood vessel growth. 
Interestingly, tetrac is anti-angiogenic even in the absence of 

spatially organizes chromatin; the association implies involvement 
of COX-2 in essential nuclear activities such as transcription, 
replication and regulation of gene expression.67-69 Nuclear COX-2 
has been shown to be complexed with Ser-15 phosphorylated p53 
and phosphorylated ERK1/2.11,13,14 It is well-established that 
resveratrol is capable of inducing apoptosis in cancer cells10-14 and 
that stilbene-induced apoptosis in this setting is p53-requiring.6,14 
Surprisingly, exposure of resveratrol-treated cells to a specific 
COX-2 inhibitor blocked stilbene-induced apoptosis.11,13,14 This 
suggested that resveratrol-inducible COX-2, rather than being anti-
apoptotic—like constitutively-expressed COX-2—participated in 
the pro-apoptotic process.

Because COX is irreversibly inactivated following catalysis, it 
is assumed that COX activity is a function of the amount of the 
enzyme protein present and that the latter is regulated exclusively 
at the levels of transcription and translation. However, induction 
of COX-2 expression (measured as mRNA or protein) does not 
always correlate with prostanoid synthesis. In fact, recent studies 
have demonstrated that posttranslational modification of COX-2 
in the form of tyrosine phosphorylation regulates COX-2 activity 
in cerebral endothelial cells.70

In contrast to such studies in non-tumor cells, experiments we 
have conducted in cancer cells have shown that stilbene-induced 
accumulation of COX-2 in the nucleus may be associated with the 
generation of complexes of COX-2 and ERK1/2 that are relevant 
to p53-dependent apoptosis.11,14 It is not clear what the biochem-
ical steps are between the COX-2-activated MAPK (pERK1/2) 
complex and activation of p53. The induction of COX-2 has been 
shown to be either ERK1/2- or p38-dependent.11

As noted above, recent studies from our laboratory also indicate 
that resveratrol-induced COX-2 associates with activated ERK1/2 
in the nucleus of cancer cells.13 It is not yet clear if activated 
ERK1/2 plays a role in nuclear COX-2 posttranscriptional modi-
fication, e.g., phosphorylation.70,71 In addition to the p38 and 
MAPK signal transduction pathways, the PI-3K/Akt cascade is 
also involved in expression and functions of COX-2. The PI 3-K/
Akt pathway is activated by COX-2 or its product, PGE2.72 PGE2 
increases angiogenesis by stimulating the PI-3K/Akt pathway and 
nitric oxide (NO) production in human umbilical vein endothelial 
cells (HUVEC).73

The finding that nuclear COX-2 can bind to the promoter 
region of one or more genes11,74—and certainly to the promoter 
region of its own gene—suggests that the protein may be transcrip-
tionally active or serve as a co-factor (corepressor or coactivator) for 
transactivator proteins.74 Thus, a view of this protein exclusively 
as an enzyme that is a critical step in the production of PGs may 
be too limited. Additional information is needed about the puta-
tive transcriptional role of the protein. It will also be important to 
determine whether constitutively expressed COX-2 protein plays a 
role in transcription.

An additional role for inducible COX-2 in the tumor cell nucleus 
was indicated by its recovery in a complex with MAPK (ERK1/2). 
In thyroid hormone-treated cells, we have described nuclear 
complexes of ERK1/2 with transcriptionally active proteins, such 
as nonpeptide hormone receptors,75-78 STAT proteins79,80 and 
the oncogene suppressor protein, p53.81 Activated MAPK in this 
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be noted that development of spontaneous hypothyroidism or 
chemical induction of mild hypothyroidism in the absence of stil-
bene may result in slowing of tumor growth.96,98,99 The clinical 
utility of resveratrol-like agents may be enhanced by reduction in 
thyroid hormone levels by low-dose antithyroid therapy or, if it 
is introduced clinically, by tetrac. The latter acts at the cell surface 
integrin αvβ3 thyroid hormone receptor to reduce the prolif-
erative effect of the hormone, but will not reduce the desirable 
intracellular actions, both genomic and nongenomic, of thyroid 
hormone, itself.

Second, in patients who may participate in trials of stilbenes, 
the finding of coincidental biochemical hypothyroidism, i.e., mild 
elevation of serum thyrotropin (TSH) concentration without 
symptoms of hypothyroidism, may not be an immediate indication 
to introduce thyroid hormone replacement.98,99 The incidental 
induction of biochemical hypothyroidism by chemotherapeutic 
tyrosine kinase inhibitors such as sunitinib does not in our view 
mandate full or partial thyroid hormone replacement.100-102 This 
point of view may also be relevant to combinations of tyrosine 

thyroid hormone, serving to block the actions of VEGF and basic 
fibroblast growth factor (bFGF).24 We have proposed that this 
action of tetrac relates to crosstalk between the integrin receptor 
for thyroid hormone and specific vascular growth factor receptors 
that may be clustered with integrin αvβ3.

That thyroid hormone can induce and that tetrac can block 
angiogenesis around tumor cell masses in vitro has been shown in 
studies conducted in the chick chorio-allantoic membrane (CAM) 
model of angiogenesis.25 Such supportive neovascularization is 
attributable to the release of pro-angiogenic growth factors by 
tumor cells.

Convergence of Integrin-Dependent, COX-2-Requiring 
Actions of Resveratrol and Thyroid Hormone at Apoptosis in 
Cancer Cells

It is apparent that resveratrol is an effective pro-apoptotic 
factor in certain cancer cells. Others and we have shown that 
this activity of the stilbene is p53-dependent.6,7,94 As described 
above, a resveratrol-inducible pool of COX-2 is a component of 
this process, forming nuclear complexes with activated MAPK 
(pERK1/2) (Fig. 1). In contrast, thyroid hormone is a prolifera-
tive factor for cancer cells and functionally anti-apoptotic by a 
mechanism that is also pERK1/2-dependent (Fig. 1). These pro-
apoptotic and anti-apoptotic actions, respectively, of the stilbene 
and iodothyronine begin nongenomically at discrete receptors on 
cell surface integrin αvβ3.

We have begun to address the particular anti-apoptotic actions 
of T4 and T3 in resveratrol-treated cancer cells. It is now clear that 
thyroid hormone decreases or prevents the formation of nuclear 
complexes of MAPK and inducible COX-2 in stilbene-exposed 
cells.13,14 Such complexes are upstream of p53-dependent induc-
tion of expression of such genes as BcL-X short form whose effects 
are pro-apoptotic. The mechanism by which thyroid hormone 
antagonizes COX-2-MAPK complex formation in the tumor 
cell nucleus is not yet clear, but it is possible that the hormone 
re-directs to other cellular functions the pool of MAPK committed 
in resveratrol-treated cells to nuclear COX-2 complex formation. 
Such an anti-apoptotic re-direction might be to cell proliferation, 
since induction of tumor cell proliferation by thyroid hormone is 
MAPK-dependent.12,78,82,86,87

Conclusions

The pro-apoptotic function of stilbenes has previously been 
recognized and may involve several mechanisms.95 However, the 
anti-apoptotic capacity of thyroid hormone has only recently been 
appreciated in the laboratory.12,13 The tumor-promoting activity 
of thyroid hormone has also been suggested by clinical observa-
tions.96-98 An inducible pool of COX-2 that translocates to the 
tumor cell nucleus is involved in the pro-apoptotic, p53-dependent 
action of resveratrol we have recently described and is the focus of 
at least one of the anti-apoptotic effects of thyroid hormone.

The possible clinical consequences of these observations are 
several. First, any clinical applications of stilbenes as cancer 
chemotherapeutic agents may be opposed by circulating endoge-
nous levels of thyroid hormone in the euthyroid patient. It should 
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Figure 1. Signaling pathways by which resveratrol induces apoptosis 
and thyroid hormone mediates proliferation in cancer cells. Thyroid hor-
mone stimulates cancer cell proliferation via a hormone receptor on an 
integrin (αvβ3)23 that is expressed in plasma membranes of tumor cells 
and endothelial and vascular smooth muscle cells. ERK1/2 activation 
(pERK1/2) is required for thyroid hormone-dependent cell proliferation, 
as shown by the action of ERK1/2 cascade inhibition by PD98059. A 
discrete stilbene receptor also is present on integrin αvβ3,10 by which 
resveratrol activates ERK1/2 and induces nuclear accumulation of COX-2.  
In resveratrol-treated cancer cells, pERK1/2 also translocates to the cell 
nucleus and complexes with inducible COX-2. Formation of this complex is 
an essential upstream feature of induction by resveratrol of p53-dependent 
apoptosis. The latter requires phosphorylation of p53 at Ser-15. NS-398 
is a specific COX-2 inhibitor that blocks resveratrol-induced activation of 
p53 and apoptosis. Thyroid hormone inhibits formation of the intranuclear 
complex of ERK1/2 and COX-2 and, thus, resveratrol-induced, p53-
requiring, apoptosis. The mechanism of the inhibition by the hormone of 
ERK1/2-COX-2 nuclear complexes in resveratrol-exposed cells is not yet 
known, but may involve competition for ERK1/2 by thyroid hormone and 
resveratrol and diversion of the kinases to the cell proliferation pathway.
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kinase inhibitor therapy and stilbenes, should such combination 
therapy come to clinical trial.

Finally, the existence of an inducible intracellular/intranuclear 
pool of COX-2 that is relevant to apoptosis raises the issue of how 
to utilize specific COX-2 inhibitors in the setting of colon or other 
cancers that may in part be dependent upon constitutive COX-2 
production. That is, one can conceive of intermittent COX-2 
inhibitor administration in such patients to permit briefly the 
chemical induction, such as has been modeled with resveratrol, of 
the nuclear pool of COX-2 and cycles of apoptosis.
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