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Cancer is a multistep process resulting in uncontrolled cell division. It results from aberrant
signaling pathways that lead to uninhibited cell division and growth. Various recent epidemi-
ological studies have indicated that consumption of cruciferous vegetables, such as garden
cress, broccoli, etc., reduces the risk of cancer. Isothiocyanates (ITCs) have been identified as
major active constituents of cruciferous vegetables. ITCs occur in plants as glucosinolate and
can readily be derived by hydrolysis. Numerous mechanistic studies have demonstrated the
anticancer effects of ITCs in various cancer types. ITCs suppress tumor growth by generating
reactive oxygen species or by inducing cycle arrest leading to apoptosis. Based on the exciting
outcomes of preclinical studies, few ITCs have advanced to the clinical phase. Available data
from preclinical as well as available clinical studies suggest ITCs to be one of the promising
anticancer agents available from natural sources. This is an up-to-date exhaustive review on the

Received: September 17, 2013
Revised: December 16, 2013
Accepted: December 17, 2013

preventive and therapeutic effects of ITCs in cancer.
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1 Introduction

Cancer is the leading cause of deaths worldwide, account-
ing for 7.6 million deaths according to recent statistics. The
number of deaths due to cancer is projected to increase to 13.1
million in 2030. These figures implicate marginal efficacy of
present standard available therapies to cancer patients, im-
plying the urgent need to identify new strategies/agents that
can be included in cancer preventive or therapeutic regimen.

Historical evidence purports nature being a prodigious
source of many drugs and drug leads for various ailments,
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including cancer [1]. Several epidemiological studies have
been published over the past few decades that indicate a
strong correlation between intake of fruits and vegetables and
reduced risk of cancer [2—4]. Basic benefits of using bioactive
dietary agents are low cost, well-known applications in tra-
ditional medicinal system, accessibility, and minimal or no
toxicity.

Epidemiological and case—control studies continue to sup-
port the notion that consumption of cruciferous vegetables
reduces the risk of developing various types of cancers, such
as pancreatic, prostate, ovarian, and breast [5-11]. Isothio-
cyanates (ITCs) occur in cruciferous vegetables as glucosino-
lates and are converted to ITCs by the action of the enzyme
myrosinase. ITCs from these vegetables are also released by
cutting or chewing or by intestinal microflora present in hu-
mans [12] (Fig. 1). ITCs have been shown to have substan-
tial chemopreventive activity against various human malig-
nancies [13, 14]. Some of the widely studied ITCs that have
potent anticancer effects are allyl isothiocyanate (AITC), ben-
zylisothiocyanate (BITC), phenethylisothiocyanate (PEITC),
and sulforaphane (SFN). Unless stated, most of the stud-
ies mentioned in this article used 95-98% pure ITCs for
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evaluating anticancer effects. This exhaustive review high-
lights the specificity of ITCs against various targets in cancer.

2 Chemoprevention by ITCs

An individual’s susceptibility to cancer is determined by nu-
merous factors, including maintenance of a critical balance
between phase I and II enzymes. Phase I primarily consists of
cytochrome P450 enzymes that play an important role in me-
tabolizing the xenobiotics and carcinogens. However, in this
process, several chemicals or procarcinogens are activated
or converted into highly reactive electrophilic metabolites.
The generated electrophiles can disturb the genomic stability
by causing DNA damage. Chemopreventive effects of ITCs
are exerted by inhibition of the bioactivation of carcinogens
by phase I drug metabolizing enzymes (Fig. 1) [15-18]. The
mechanistic studies by Morse et al. and others indicate that
administration of ITCs prevents the tumor promoting effects
of various chemical carcinogens in different animal mod-
els [19-21]. PEITC has been shown to possess significant
chemopreventive properties against tobacco-induced carcino-
gens in rodent models of lung and esophageal cancers [22,23].
AITC also inhibits NNK (a tobacco-derived carcinogen) in-
duced tumors in rats [24]. Similar to other ITCs, AITC in-
duces phase II detoxifying enzymes quinone reductase and
glutathione-S-transferase (GST) in the animal tissues [25].
Cytochrome P450E1 and N-dimethylnitrosoamine demethy-
lase are major enzymes that cause bioactivation of tobacco
specific nitrosoamines. These enzymes can be inhibited by
glutathione conjugates of ITCs [26]. ITCs also inhibit various
isoforms of cytochrome P450 (CYP450) directly, for example,
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Figure 1. Chemopreventive effects of
ITCs.

BITC suppresses cytochrome P450 2E1, while SFN inhibits
cytochrome P450 1A2 [27,28)]. SFN also has been shown to
inhibit steroid and xenobiotic receptor, a nuclear hormone
receptor that regulates expression of CYP3A4 [29]. Zhou et
al. showed specific antagonism by SFN to inhibit drug clear-
ance due to steroid and xenobiotic receptor induced activity
of CYP3A4.

Phase II enzymes, such as GST, NADPH quinine ox-
idoreductase, and UDP-glucuronosyltransferases play an
important role in detoxifying carcinogens as well as
xenobiotics. ITCs are known to induce phase II enzymes
that further explain the cancer chemopreventive activity of
ITCs[28,30-34]. GST catalyzes the conjugation of glutathione
with electrophilic compounds making them more water-
soluble and facilitating their removal from the body [35, 36].
It is well known that ITC-GSH conjugate is exported out by
MRPs [37]. As a result of continuous conjugation and efflux
of the conjugate, intracellular GSH level drops significantly
within 3 h of ITC treatment. This time also coincides with the
induction of GST and mitogen-activated protein kinase [38].
Due to nonavailability of GSH, ITCs bind with other vital
cellular proteins causing their thiocarbamoylation [37]. Al-
though being electrophilic, no studies have reported direct
binding of ITCs to cellular DNA [39]. In addition, PEITC has
been shown to demethylate the promoter region of GSTP1 to
induce the expression of GSTP1 [40]. ITCs also induce GSTs
that scavenge reactive oxygen species (ROS) [41]. The action
of phase II enzymes is primarily regulated by the antioxidant
or electrophile response element. The latter can be activated
by the transcription factors, such as the basic leucine zipper
(bZIP) Nrf2, that heterodimerizes with Maf G/K to exhibit its
effects. ITCs induce the Nrf2 transcription factor to activate
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antioxidant response element that in-turn translates in the ac-
tivation of mitogen activated protein kinase ERK/JNK, PI3K,
and PKC [41-44]. SFN induces epigenetic modifications by
inhibition of histone deacetylase (HDAC) 1, 4, 5, and 7. In
addition, SFN-induced demethylation at the promoter region
of Nrf2 causes enhanced expression of Nrf2 in the TRAMP
mice model for prostate cancer [45]. SFN’s chemopreven-
tive effects mainly depend on induction of phase II enzymes
through the activation of antioxidant response elements, such
as Keap1/Nrf2 [31, 46, 47]. SFN-mediated induction of Nrf2
was found to be through the activation of heme oxygenase
1 and inhibition of p38 in hepatoma cells [42]. Furthermore,
several studies have shown induction of thioredoxin reduc-
tase as well its substrate thioredoxin by SFN in various cancer
cell lines [48-50]. Inhibition of key survival pathway, such as
NF-kB and AP-1, by ITCs also contributes to the chemopre-
ventive effects of ITCs [44].

ITCs thus modulate phase I and II enzymes to reduce
the bioactivation of carcinogens as well as enhanced detox-
ification. This dual mechanism leads to reduced binding of
carcinogens with the DNA and hence less mutagenic or car-
cinogenic effects.

These studies suggest existence of mutually distinct mech-
anisms of chemopreventive and chemotherapeutic effects
of ITCs. Specific targets have been identified that mediate
chemotherapeutics effects of different ITCs against human
cancers [30,41,44, 51-53]. These targets might vary with the
structural variations among ITCs as well as the nature and
origin of cancer. Several studies demonstrate that ITCs mod-
ulate cancer cell signaling by acting on multiple targets to
suppress growth and progression of cancer cells [41,53].

3 Uptake of ITCs by cancer cells

The uptake of anticancer agents is an important limiting
factor for efficacy. Most of the ITCs can be taken up by
the cells through passive diffusion. The cellular uptake of
ITCs correlates with the induction of phase II detoxifying
enzymes important for chemopreventive activity. It was ob-
served that the intracellular concentrations of ITCs can reach
up to 100- to 200-fold higher than the extracellular concen-
trations. For example, when hepatoma cells were incubated
with 100 uM SEN for about 30 min, the intracellular con-
centrations reached about 6.4 mM [38]. The magnification
of intracellular concentration was due to the formation of
dithiocarbamates, as I'TCs rapidly conjugate with thiols, par-
ticularly GSH (Fig. 2). Uptake of ITCs in cancer cells was
GSH dependent. The uptake was reduced if GSH concen-
tration was increased. The ITC-GSH conjugate being the
substrate of MRPs is transported out of the cells (Fig. 2). This
mechanism of uptake and cellular accumulation can be vital
in designing the dose regimens of these ITCs. The dose will
require the adjustment for high accumulation as well as to
compensate for the rapid export through transport proteins,
such as MRPs [54]. The shuttling of ITC-GSH causes prompt
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Figure 2. Mechanism of cellular uptake of ITCs.

depletion of intracellular GSH, resulting in the perturbation
of cellular redox homeostasis. This could be one plausible
mechanism of ROS generation by ITCs.

4 Chemotherapeutic targets
4.1 Benzylisothiocyanate (BITC)

BITC occurs in cruciferous vegetables like cabbage, mus-
tard, watercress, cauliflower, and horseradish that consti-
tute a significant proportion of our daily diet (Fig. 3). Accu-
mulating evidence suggests the anticancer effects of BITC
through suppression of initiation, growth, and metastasis
of human cancers in various mouse models [55-61]. BITC
induces apoptosis selectively in cancer cells through mul-
tiple mechanisms [55, 60, 62]. Major anticancer effects of
BITC are due to the generation of ROS. BITC causes cell-
cycle arrest as well as disruption of mitochondrial mem-
brane potential to initiate mitochondrial pathway of apopto-
sis[57,63]. Studies from our laboratory have demonstrated the
anticancer effect of BITC against pancreatic tumor growth via
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Figure 3. Chemotherapeutic targets of ITCs.

www.mnf-journal.com



4 P. Gupta et al.

inhibition of key molecules overexpressed in cancer, such as
protein kinase B (AKT) signal transducer and activator of
transcription 3, HDAC, and nuclear factor kappa B (NFkB)
(Table 1) [7,55,56,59]. The targets of BITC can be divided as
per their role against cancer-promoting mechanisms.

4.1.1 Cell proliferation and growth

Phosphoinositide 3 kinase (PI3K)/AKT pathway has been
shown to be activated in about 59% of the pancreatic tu-
mors, and it also promotes cell division in other cancer forms
[64, 65]. PI3K stimulation results in the phosphorylation of
AKT at Thr-308 and Ser-473 through phosphatidylinositol-
dependent kinase (PDK1) activation [66]. Studies by Boreddy
et al. have shown that BITC inhibits PI3K/AKT signaling.
BITC prevents the phosphorylation of AKT at both Thr-308
and Ser-473 along with suppression of PI3K (Tyr-458), PDK1
(Ser-241), mammalian target of rapamycin (mTOR) (Ser-
2448) [55]. The inhibition of mTOR signaling by BITC was
also observed in human prostate cancer cells [67]. These stud-
ies showed that BITC had negligible effect on normal human
pancreatic ductal epithelial 6 cells, suggesting the specificity
of BITC toward cancer cells [55]. These results also showed
upregulation of proapoptotic proteins, such as Bim, p21, and
p27, due to nuclear accumulation of Forkhead Box Protein 1
(FOXO1). Inhibition of phosphorylation of FOXO1 (Ser-256)
and FOXO03a by BITC was due to the dephosphorylation of
AKT in pancreatic cancer cells [55]. Interestingly, BITC also
reduced acetylation of FOXO proteins by reducing the level of
CREB-binding protein (CBP) protein [55]. FOXO1 suppres-
sion was also shown to be responsible for BITC initiated cell
death in breast cancer cells [68].

NF-kB is a transcription factor that regulates cellular in-
flammation, immunity, and proliferation [69, 70]. Batra et al.
showed that BITC-mediated downregulation of HDAC1 and
HDAC3 expression was associated with the acetylation of
NF-kB in pancreatic cancer cells [56]. BITC treatment signif-
icantly suppressed the phosphorylation of NF-kB at Ser-276
and Ser-536 in BxPC-3 and Capan-2 cells in a dose and time
dependent manner [56,61]. BITC reduced NF-kB protein ex-
pression in BxPC-3 cells but not in Capan-2 cells, indicating
that BITC acts differentially on different cell lines [56]. The
Capan-2 cells have wild-type p53, whereas BxPC-3 cells har-
bor mutated p53, hence the role of p53 in BITC-mediated
downregulation of NF-kB expression cannot be ruled out
and remains to be explored further. The mechanistic stud-
ies revealed that neither I kappa B (IkB) phosphorylation nor
expression levels were altered by BITC, whereas IkB kinase
(IKK) expression was downregulated. Hence, downregulation
of IKK by BITC treatment could be the reason for inhibition
of NF-kB phosphorylation (Ser-536) [56, 61].

STATS3 is hyperactivated in significant number of malig-
nancies, such as breast cancer, pancreatic cancer, gastric can-
cer, and head and neck cancer as well as in cancer stem
cells where it enhances tumor aggressiveness and progres-
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sion [71-73]. Sahu and Srivastava have shown that BITC
suppresses the phosphorylation (Tyr-405 and Ser-727) and
expression of STAT3 in pancreatic cancer cells lines, such as
BxPC-3, PanC-1, Capan-2, and MIA PaCa-2 [59]. The role of
STAT3 in the anticancer effects of BITC was confirmed by
STAT3a overexpression or through activation by IL6, which
abrogates the effects of BITC (Table 1) [59].

4.1.2 Angiogenesis

The growing tumors are nourished through processes such as
angiogenesis and neovascularization. Angiogenesis is mainly
promoted by hypoxia inducible factor (HIF-1a) and vascu-
lar endothelial growth factor (VEGF) [74]. STAT3 has been
shown to be a positive regulator of VEGF and HIF-1« [75,76].
Boreddy et al. demonstrated that BITC inhibits angiogenesis
in chicken chorioallantoic membrane and rat aortic ring as-
say [77]. This clearly indicates the antiangiogenic potential of
BITC. BITC-mediated suppression breast cancer xenografts
was associated with inhibition of critical angiogenic factors,
such as CD31 and VEGF [78]. Furthermore, BITC downreg-
ulated the expression of HIF-1a; vascular endothelial growth
factor receptor (VEGFR); MMP-2 (where MMP is matrix met-
alloproteinase); Rho A; Rho C; and ras-related C3 botulinum
toxin substrate 1 (RAC1), 2, and 3 in pancreatic, but the in-
hibition of VEGF, HIF-1a, and MMP-2 was not observed in
STAT3 overexpressing BxPC-3 cells [77]. This undoubtedly
suggests that inhibition of tumor growth and angiogenesis
by BITC correlates with STAT3 inhibition.

4.1.3 Mitochondrial cell death

Generation of ROS is an important mechanism to induce cell
death, specifically in cancer cells. As shown by us and others,
BITC significantly induced ROS generation in pancreatic can-
cer cells and glioma as well as other cancer models [57,79-82].
ROS generation leads to disruption of mitochondrial mem-
brane potential and release of proapoptotic molecules result-
ing in activation of caspase-mediated cell death [63, 81, 83].
Furthermore, BITC-mediated downregulation of myeloid cell
leukemia marker 1 (MCL-1) in human leukemia cells was
also found to be correlated with the mitochondrial pathway
of apoptosis [84].

4.1.4 Cell-cycle arrest

ROS induced by BITC also damage DNA and causes G2/M
cell-cycle arrest as detected through increased phosphoryla-
tion of H2A X (Ser-139) and ChK2 (Thr-68) [57,60,61]. Antiox-
idants block the effects of BITC confirming the role of ROS in
cell-cycle arrest [57]. BITC treatment increased the phospho-
rylation of the MAP kinases, such as ERK (Thr202/Thy204),
JNK (Thr183/Tyr185), as well as p38 (Thr180/Tyr182), in a
dose-dependent fashion [57,62]. It was later found that BITC-
induced cell-cycle arrest was executed only through ERK,
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while the other MAP kinases were playing role in the induc-
tion of apoptosis [57].

4.1.5 Invasion and metastasis

Metastasis is initiated by key regulators, such as matrix met-
alloproteinases, Twist, and B-catenin. A study showed that
BITC treatment inhibited cell migration and invasion in lung
cancer cells. This was accompanied with reduced expression
of MMP-2, Twist, and B-catenin [80]. Another study showed
that oral administration of 5 and 10 mg/kg BITC suppressed
the expression of MMP-2 and MMP-9 in the sera and lungs
of mice injected with 4T1 breast cancer cells [85]. BITC also
inhibits the process of epithelial to mesenchymal transition
through FOXQ1 suppression in breast cancer cells, leading
to reduced metastatic potential [86]. The data available for
antimetastatic effects of BITC are insufficient to prove the
antimetastatic efficacy. Hence, additional elaborate studies
are required to establish the role of BITC in metastasis.

4.1.6 In vivo studies

Our in vivo studies indicated that BITC is well tolerated at
a dose of 12 pmol/day (72 mg/kg) in mice. Interestingly,
in vivo tumor growth was markedly arrested by BITC treat-
ment in athymic nude mice as compared to controls [59].
These results showed that after 6 wk of 12 pmol/day BITC
treatment by oral gavage, average tumor volume in BITC-
treated mice was about 48% less as compared to the control
group [59]. LC-MS analysis showed that after 46 days of BITC
(12 pmol/day) treatment, mean concentration of 6.5 £+ 0.1
pmol/L (39 mg/L; n = 10) and 7.5 £ 0.3 wmol/g (45 mg/g;
n = 10) BITC was observed in the plasma and tumors of
treated mice, respectively [55]. These results suggest a rea-
sonable bioavailability of BITC and also that the therapeutic
concentration could be achieved in vivo by oral administra-
tion. No untoward side effect or change in body weight was
observed, suggesting that 12 pmol/day BITC was relatively
safe. Furthermore, suppression of in vivo angiogenesis by 12
pmol/day (72 mg/kg) treated mice was observed by reduction
of hemoglobin content by 76% in matrigel plugs implanted
in the mice as well by 61% in the excised tumor xenografts,
as compared to respective controls [77]. These results signify
the potential antitumor and antiangiogenic effects of BITC.
The molecular targets of BITC have been described in de-
tail in Table 1. Interestingly, dietary BITC also suppressed
the growth of cancer stem cell in mouse mammary tumor
virus-neu (MMTV-neu) breast cancer transgenic mice model
along with inhibition of major stem cell markers, such as
Oct4, SOX-2, and Nanog [87]. In contrast, the activation of
NOTCH2 signaling by BITC was found to impede the thera-
peutic benefits of BITC [88]. A recent study from our group
showed that the absorption and bioavailability of BITC can
be enhanced by making the nanoemulsion of BITC [89].
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4.1.7 Toxicity studies

No major evidence of BITC side effect exists for the doses
that are commonly used for anticancer studies. A study has
shown that oral administration of BITC (0, 50, 100, and
200 mg/kg) for 4 wk caused reduction in body weight and
reduced food consumption only at highest doses [90]. In addi-
tion, the study revealed that BITC treatment caused increase
in serum cholesterol and decrease in triglycerides, accompa-
nied with renal dysfunction. Furthermore, in this study BITC
treatment reduced the weight of almost all the organs except
the adrenals, where the weight was increased. Some transi-
tory hematological changes, such as reduced hemoglobin and
lymphocyte count, with increased platelets, eosinophils, and
neutrophils were observed in BITC-treated rats. Itis pertinent
to note that no significant signs of toxicity were observed at the
dose of 50 mg/kg. Although these changes were observed at
higher doses (100 and 200 mg/kg) of BITC, no mortality was
reported [90]. The high doses such as 100-200 mg/kg BITC,
which were associated with some side effects, are unlikely to
be used for antitumor effects. So far the therapeutic doses
of BITC, which suppresses in vivo tumor growth, are much
lower and not associated with any side effects and hence can
be considered relatively safe.

4.2 Phenethylisothiocyanate (PEITC)

PEITC is another isothiocyanate that occurs conjugated with
glucosinolate in many cruciferous plants. PEITC is abun-
dantly present in plants, such as watercress, garden cress and
in some noncruciferous plants, such as turnips and radishes
[30, 91]. Watercress is the most prolific source of PEITC,
which can release approximately 2-6 mg PEITC/ounce (0.07-
0.21 mg of PEITC/g) in humans [91,92].

The effective concentrations of PEITC vary from 0.12 to
14 wM [93, 94]. Like BITC, PEITC also induces ROS gener-
ation selectively in cancer cells [95, 96]. Mechanistic stud-
ies have shown that PEITC disrupts mitochondrial elec-
tron transport chain by inhibiting complex I and III activ-
ity and reduces oxygen consumption rate in prostate cancer
cells [97,98]. Furthermore, PEITC is known to inhibit ROS-
detoxifying mechanisms to enhance ROS-mediated cytotoxic-
ity [96-98]. This was further proven in cells with varying levels
of anti-ROS mechanisms that showed differential sensitivity
toward PEITC [99,100].

Two general mechanisms that have been identified for
the anticancer activity of PEITC include cell-cycle arrest and
apoptosis induction [44, 101, 102]. Few studies also suggest
antiangiogenic and antimetastatic effects of PEITC by mech-
anisms similar to BITC [80,103-106]. PEITC has been shown
to act on about 30 different targets present in cancer cells
(Fig. 3) [107]. Mi et al. have shown that PEITC alters the func-
tion of critical amino acids of proteins and peptides through
covalent interactions [107].
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4.2.1 Cell proliferation and growth

Studies suggest that PEITC has multiple targets, such as
AKT, epidermal growth factor receptor (EGFR), and hu-
man epidermal growth factor receptor 2 (HER2), in cancer
cells that promote antiapoptotic mechanisms in cancer cells.
As discussed earlier, AKT (protein kinase B) is frequently
overexpressed in cancers and regulated by oncogenes, such
as EGFR and HER?2 [108]. Our studies demonstrated that
PEITC inhibits EGFR and HER?2 in ovarian and breast can-
cer cells [95,109]. PEITC caused significant inhibition of ac-
tivated EGFR (Tyr1068) to suppress the growth of ovarian
cancer cells. Furthermore, PEITC reduced the phosphory-
lation of AKT and mTOR expression [109]. In this study,
PEITC also disrupted the complex of Raptor and Rictor with
mTORC1 and mTORC2 [109]. In another study, we observed
inhibition of HER2 and AKT in breast cancer cells. These
observations suggest that PEITC inhibits AKT activation by
suppressing EGFR and HER2 expressions to suppress an-
tiapoptotic signaling in cancer cells (Table 1). Furthermore,
PEITC also inhibits HDACs, the major epigenetic regulators
resulting in the inhibition of androgen receptor in prostate
cancer cells [40].

4.2.2 Angiogenesis

Similar to BITC, PEITC also inhibits VEGF, a major pro-
moter of angiogenesis. Xiao and Singh showed suppression
of VEGF by PEITC, which was later shown to be mediated
through suppression of HIF-1a [105,110-112]. Based on the
evidence provided in these studies, it can be suggested that
PEITC inhibits angiogenesis mainly by inhibiting VEGF.

4.2.3 Mitochondrial cell death

Accumulating evidence from several studies showed induc-
tion of apoptosis signaling by PEITC. PEITC has been shown
to activate death receptors and Fas-mediated extrinsic apop-
totic pathway in oral and cervical cancer cells [113-115].
PEITC treatment also resulted in the activation of intrin-
sic pathway of apoptosis. PEITC modulates mitochondrial
proteins, such as BCL-2, BID, and BAX, causing the release
of cytochrome c into cytosol to induce intrinsic apoptosis
pathway [94,116-119]. However, the release of cytochrome
¢ by PEITC treatment into cytosol to induce apoptosis was
contradicted by a study conducted by Wu et al. [120]. Fur-
ther in-depth studies are thus required to delineate the exact
mechanism of PEITC.

4.2.4 Cell-cycle arrest
PEITC as well as its N-acetyl cysteine conjugate causes ac-
tivation of retinoblastoma protein in prostate cancer cells,

leading to attenuation of cell-cycle progression [39,121]. Fur-
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thermore, a GO/G1 phase cell-cycle arrest by PEITC was as-
sociated with activation of p53 in oral squamous carcinoma
cells, in multiple myeloma, osteogenic sarcoma and breast
cancer cells, and G2/M cell-cycle arrest in prostate cancer
cells [51,52,116,117,122,123]. Interestingly, lung carcinoma
cells expressing mutated p53 were shown to be more sensi-
tive to PEITC as compared to cells with wild-type p53 expres-
sion [107,124].

4.2.5 Invasion and metastasis

PEITC inhibits cancer cell invasion by inhibiting MMPs and
suppresses activity of ERK and NF-kB to inhibit metasta-
sis [103,104]. We recently demonstrated in vivo antimetastatic
potential of PEITC using a unique mouse model of breast
cancer metastasis [94]. This model utilizes MDA-MB-231-
Luc2 brain-seeking breast cancer cells that lodge in the brain
from blood circulation when injected into the left ventricle of
mouse heart. These cells later grow to form metastatic tumors
in brain. Oral administration of 10 wmol PEITC (65 mg/kg)
for 10 days significantly prevented the seeding of breast can-
cer cells into the brain in this model. We also observed that
PEITC administration suppressed the growth of metastasized
tumor in the brain and enhanced the survival of mice bear-
ing tumors in the brain [94]. This was the first evidence of in
vivo antimetastatic effects of PEITC in breast cancer model,
but further studies are required to establish similar efficacy
in other cancer forms. The molecular targets of PEITC have
been described in detail in Table 1.

4.2.6 In vivo studies

PEITC-mediated inhibition of anti-apoptotic pathways was
observed in the preclinical mouse model studies [125]. PEITC
has a dose-dependent bioavailability of about 70-110% by oral
administration, which is a probable reason for in vivo efficacy
[126]. Treatment of brain metastatic breast cancer has always
been a problem due to the presence of blood-brain barrier.
Organ distribution study has revealed a fair availability of
PEITC in brain, suggesting better chances of PEITC to cross
blood—brain barrier [127]. This could be the reason for the
antimetastatic effects of PEITC [94]. These studies indicate a
high antitumor efficacy of PEITC in all organs including brain
by oral administration. Orally administered PEITC causes
significant inhibition of major oncogenic pathways, such as
EGFR, HER2, and AKT, in various in vivo cancer models
leading to tumor growth suppression [94, 95,109, 128]. These
results clearly reenforce potential for in vivo efficacy of PEITC.

4.2.7 Toxicity studies

In addition to the beneficial effects, it is also essential to eval-
uate the probable side effects of PEITC. It was observed that
intra-peritoneal (i.p.) administration of 80 and 160 mg/kg

www.mnf-journal.com
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PEITC caused increase in body weight of mice, but reduction
in the weights of liver and spleen [129]. Interestingly, pre-
ventive effects of PEITC were observed on acetaminophen-
induced hepatotoxicity and mortality [130]. These mutually
contradicting observations make it important to establish a
well-defined toxicity profile of PEITC using appropriate con-
trols and population size.

4.2.8 Clinical studies

Three clinical studies are currently under progress to test
anticancer effects in humans. A phase I lung cancer study
with PEITC conducted at MD Anderson Cancer Center was
recently completed; however, the findings have not yet been
published. Another phase I clinical study at the same insti-
tution has been planned to test the anti-leukemic effects of
PEITC. Notably, a recent phase I clinical trial (NCI CN-55120)
reported that 10 uM PEITC can be achieved in the plasma af-
ter intake of 200 mg PEITC orally in human volunteers [131].
A phase II trial is also under progress in lung cancer patients
at the Masonic Cancer Center, University of Minnesota in col-
laboration with the National Cancer Institute. The outcomes
of these studies will provide data on the efficacy and toxicity
of PEITC in humans.

4.3 Sulforaphane (SFN)

SFN is an isothiocyanate mainly present in broccoli and Brus-
sels sprouts. Studies have shown that SEN is highly effective
in blocking carcinogenesis (Fig. 3). SFN inhibits HDAC activ-
ity to promote cell-cycle arrest and apoptosis in Nrf2~/~ cells
suggesting Nrf2 independent mechanism of SFN [132,133].

4.3.1 Cell proliferation and growth

SFN acts on certain molecular targets, such as survivin and
NF-kB, that are vital for cancer cell survival [134,135]. SEN
induces apoptosis in breast cancer cells by the inhibition of
estrogen receptor, EGFR1, and HER2, which are particularly
important for the growth of breast cancer [136]. Recently SEN
was shown to cause DNA damage through enhanced acety-
lation of DNA repair proteins. This effect was shown to be
specific for cancer cells as there were no epigenetic changes
or DNA damage observed in noncancer cells [137]. Interest-
ingly, based on the methylation of DNA and cyclin D2 by
SFN, a clinical trial (NCT01265953) has also been initiated
at Portland, VA Medical Center [138]. Studies suggest signif-
icant epigenetic changes induced by SFN in various cancer
models.

4.3.2 Angiogenesis

Very few studies have reported the antiangiogenic effects
of SFN. The suppression of VEGF and MMP-2 has been
shown by SFN treatment [139, 140]. Another study indicated

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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that VEGF suppression was mediated through inhibition of
FOXO1/AKT pathway [141]. However, no further evidence
exists for the antiangiogenic effects of SFN. Due to the lack
of sufficient evidence, antiangiogenic activity cannot be con-
sidered as a critical mechanism of SEN.

4.3.3 Mitochondrial cell death

Another important mechanism of action of SFN was inactiva-
tion of inhibitors of apoptosis proteins [142]. SEN-mediated
inhibitors of apoptosis protein inhibition was associated with
BCL-2 inhibition, suggesting activation of intrinsic apoptosis
pathway [143]. SEN also causes generation of mitochondrial
ROS in cancer cells that further leads to release of cytochrome
c into cytosol augmenting cell apoptosis [144]. Interestingly,
an ROS independent activation of MEK/ERK pathway was
shown to lead to caspase-dependent apoptosis in neuroblas-
toma cells [145].

4.3.4 Cell-cycle arrest

SFN was shown to induce p27-mediated GO/G1 phase cell-
cycle arrest [146]. In addition, SFN causes irreversible cell-
cycle arrest in G2/M phase followed by caspase-mediated
apoptosis [147]. Recent studies have shown that SFN induces
G2/M arrest through the activation of p21 (CIP1/WAF1)
and inhibition of Cdc2/Cyclin B1 complex independent
of p53 [148]. This study showed that apoptosis following
G2/M arrest was induced by caspase and PARP activation
in leukemia cells [148]. Specific activation of MAP kinases,
such as ERK, JNK, and p38, in response to SFN treat-
ment was shown to be involved in inducing cell-cycle arrest
[149, 150].

4.3.5 Invasion and metastasis

SFN exhibits potent antimetastatic effects by suppressing
cell migration and invasion. Jee et al. observed that the anti-
cell migratory effect of SFN was associated with MMP sup-
pression [151]. Recently epithelial to mesenchymal transition
(EMT) was shown to be an important mechanism of SFN
to inhibit cell migration and metastasis in different cancer
types [143,151-153]. Li et al. have shown that SFN modulates
Sonic hedgehog pathway to suppress self-renewal capacity
of the pancreatic cancer stem cells and reduce EMT charac-
teristics [143]. Significant suppression of SNAIL and ZEB-1
marked by the reexpression of E-cadherin was observed by
SFN treatment that lead to reversal of EMT [153]. EMT pre-
vention by SFN was also associated with induction of miR-
200c and reexpression of the estrogen receptor [154]. The
details of molecular targets of SFN have been described in
Table 1.

www.mnf-journal.com
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4.3.6 In vivo studies

Kanematsu et al. demonstrated the in vivo efficacy of SFN
against tumor growth and metastasis in breast cancer [152].
Pharmacokinetic studies show good bioavailability of SFN af-
ter oral administration. A concentration of 20 uM in plasma
was achieved after oral administration of 50 wmol SFN/rat
(35 mg/kg) [155]. In a human study it was shown that after
consumption of 200 pwmol SEN (35.5 mg), about 2 pmol/mg
(0.355 ng/mg) SFN was detected in the breast tissue, sug-
gesting its availability at the tumor site [156]. The cumulative
concentration of SFN in the small intestine was shown to be
sufficient to inhibit tumor growth in the colonic tissue [157].
These studies clearly indicate bioavailability and favorable
pharmacokinetic profile of SEN that can be instrumental for
future development of SFN as an anticancer agent.

4.3.7 Toxicity studies

Along with the anticancer activity of SFN, it is important to
study its toxicity to assess to benefit to risk ratio. An increase
in hepatoxicity indicators aspartate aminotransferase (AST),
alanine aminotransferase (ALT), and lactate dehydrogenase
(LDH) in plasma was observed with SFN (1.6 mg/mouse/day
[64 mg/kg] for 14 wk) administration in mouse bearing
benzo(a)pyrene-induced (B(a)P; 100 mg/kg b.wt.) lung can-
cer [158)]. Interestingly, opposite findings were reported in
another study. The rats were pretreated with 3 mg/kg SFN
by intraperitoneal injection. One hour later an intestinal is-
chemia/reperfusion surgery was performed to induce toxic-
ity. It was observed that SFN administration increased the
SOD levels along with reduction of myeloperoxidase, ALT,
and AST levels in serum [159]. Both the studies used signifi-
cantly different concentrations of SFN, which can explain the
opposite observations. However, due to the lack of confirma-
tory evidence, overall no conclusion can be drawn about the
toxicity of SEN.

4.4 Allyl isothiocyanate (AITC)

AITC is an aliphatic isothiocyanate derived from sinigrin and
is excreted as NAC conjugates in the urine [160]. A recent
study demonstrated a short-term reversible DNA damage
when AITC was provided in the diet [161]. Cancer cells in
general are more susceptible to DNA damage leading to cell
death. This explains the enhanced sensitivity of cancer cells
toward AITC. The cytotoxic effects of AITC were shown to be
specific to cancer cells (Fig. 3) [162]. Smith et al. demonstrated
apoptosis induction by AITC in colorectal cancer cells [163].

4.4.1 Cell Proliferation and growth

AITC targets specific signaling molecules to suppress cancer
cell growth. ERK and JNK signaling were involved in the
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activation of AP-1 by AITC to suppress cancer cell growth
[164,165].

4.4.2 Mitochondrial cell death

Geng et al. observed that AITC resulted in the phosphoryla-
tion of BCL-2 to induce apoptosis, whereas mutated BCL-2
abrogated the cytotoxic effects of AITC [166).

4.4.3 Cell-cycle arrest

Srivastava et al. demonstrated the in vivo efficacy of AITC in
prostate cancer [167]. This study indicated that cell growth
arrest in G2/M phase by AITC was associated with the inhi-
bition of cyclin B1, cell division cycle (Cdc)25B and Cdc25C.

4.4.4 Invasion and metastasis

The antimetastatic effects of AITC have been demonstrated
through suppression of cell migration and invasion. It was ob-
served that AITC inhibits MMP2/9 to exhibit antimetastatic
effects in hepatoma cells [168]. Furthermore, AITC exerts
antiangiogenic effects to suppress tumor growth by down-
regulating angiogenic factors, such as nitric oxide and tumor
necrosis factor o (TNF-q; Table 1).

4.4.5 In vivo studies

AITC was shown to inhibit tumor and ascites formation
from Ehrlich ascites tumor cells in mice. This study also re-
vealed enhanced survival of ascites-bearing mice with AITC
treatment [169]. Furthermore, i.p. administration of 25 ng
AITC/animal (1 mg/kg) in mice inhibited tumor-directed
capillary formation, suggesting inhibition of angiogenesis.
AITC treatment also reduced serum nitric oxide and TNF-
a levels indicating reduction in inflammatory markers by
AITC [170]. These studies suggest a good in vivo efficacy of
AITC. Nonetheless, more studies are required to confirm the
in vivo activity against contemporary targets in cancer.

4.4.6 Toxicity studies

Preclinical studies have demonstrated some toxicity induced
by AITC. Significant hematological changes were observed
with AITC treatment. Subcutaneous administration of 20
mg/kg AITC reduced WBC counts by 25% along with
marked reduction of lymphocytes and monocytes. In addi-
tion, increase in neutrophil and corticosteroid levels were
observed, indicating stress induced by AITC. The AITC treat-
ment caused reduction in thymus weights while increasing
the weights of adrenals [171]. These observations suggest

www.mnf-journal.com
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significant effect of AITC on blood profile and organ weights.
Interestingly in another study, i.p. administration of 25 pg
AITC/animal every day for five consecutive days showed
reduced WBC count at the 9th day after starting the treat-
ment [172]. Perhaps the differences between these observa-
tions could be due to different doses and the time points of
analysis after AITC administration. Another study showed
increased AST levels at high doses of AITC (100-150 mg/kg),
but no change was observed at lower dose (50 mg/kg), sug-
gesting dose-dependent toxicity induced by AITC [173]. In-
terestingly, oral administration of AITC resulted in bladder
toxicity in rats. This was found due to free AITC cleaved
from urinary metabolites [174]. Taken together, studies sug-
gest that AITC exhibits toxic side effects, cautioning its use.
Further in-depth studies are required to establish the toxicity
profile of AITC so that the dose for anticancer effects can be
titrated effectively.

5 Potential for combination therapy

Cancer cells contain multiple aberrant signaling pathways
that lead to drug resistance and therapy failure in many pa-
tients. Combination therapy is known to kill cancer cells
more effectively through diverse mechanisms simultane-
ously. ITCs exhibit a diverse range of cellular targets for
anticancer effect. This property of ITCs makes them highly
desirable for combinatorial therapeutic approaches. Several
combination strategies have been tested in preclinical studies
by combining ITCs among themselves or with conventional
or new anticancer therapies (Table 2) [58,175-182].

Radiation therapy is an important intervention for major-
ity of cancers. Radiation has been shown to activate some
important cancer cell survival signaling molecules, such as
AKT, ERK, and MCL-1 that lead to reduced efficacy. Our
studies have shown that when BITC was combined with ra-
diation therapy, a 2.8-fold increase in apoptosis and cleavage
of caspase-3 was achieved in pancreatic cancer cells [58]. In
addition to increased apoptosis, inhibition of NF-«kB and acti-
vation of p38 was also observed with the combination of BITC
and radiation therapy [58]. The combination of BITC or SEN
with the radiation therapy caused increased G2/M cell-cycle
arrest [58,175]. Combination of SFN with radiation therapy
also showed inhibition of activation of critical molecules, such
as AKT, ERK, and MCL-1, along with induction of ER stress,
explaining its efficacy [175,183-187].

TNF-related apoptosis-inducing ligand (TRAIL) is a po-
tential chemotherapeutic agent. Interestingly, TRAIL death
receptors are highly expressed on cancer cells but not on nor-
mal cells making the cancer cells more susceptible to TRAIL-
induced apoptosis as compared to normal cells [188, 189].
However, resistance to TRAIL is reported in many cancer
cells [189,190]. Our studies showed that BITC sensitized pan-
creatic cancer cells to TRAIL-induced apoptosis by activating
both intrinsic and extrinsic pathway [191].
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Accumulating evidence shows that combination of ITCs
with conventional chemotherapeutics improves the efficacy
against resistant cancer cells. Studies suggest synergistic ac-
tivity of ITCs with common anticancer agents, such as cis-
platin, adriamycin, etoposide, paclitaxel, metformin, vorino-
stat, and docetaxel [176,181,192-194]. Both BITC and PEITC
increased the apoptotic effects of cisplatin through depletion
of B-tubulin, but the combination did not affect DNA plati-
nation [180, 192]. Furthermore, reversal of the resistance to
cisplatin was observed with PEITC, which was mediated by
depletion of cellular GSH [176]. The combination of met-
formin and PEITC also showed high efficacy in cisplatin
resistant cancer cells [177]. PEITC and SFN caused inhibi-
tion of antiapoptotic proteins, such as protein kinase C (a,
B, &, and s), and telomerase, while increasing proapoptotic
protein kinase CO6 to enhance the apoptosis caused by adri-
amycin and etoposide [194]. Also, the combination of adri-
amycin with SEN induced sensitivity in resistant cancer cells
by the effect of adriamycin independent of p53 [193]. An
HDAC inhibitor, vorinostat, induced ROS to increase resis-
tance in cancer cells. PEITC treatment suppressed the cyto-
protective antioxidant response through depletion of cellular
ROS to reverse the resistance in leukemia cells [178]. The
efficacy of taxanes was also enhanced by PEITC in different
forms of cancer [97,195]. The combination of SFN with ox-
aliplatin caused increased DNA fragmentation, suggesting
synergism through oxaliplatin dependent mechanism [196].
NF-kB is a known target of SFN [197]. NF-«kB inhibition by
SFN mediated synergism with sorafenib and 5-fluorouracil
to inhibit pancreatic cancer stem cell survival and salivary
gland adenoid cystic carcinoma, respectively [179,181]. These
observations suggest that ITCs can utilize the mechanisms
of action of conventional agents or can induce independent
effects to exhibit synergism.

Although most of the combinations exhibited synergistic
effects in cancer cells, a combination of 5-fluorouracil with
SFN showed antagonistic activity in the normal cells by mod-
ulating G2/M cell-cycle phase [198]. This suggests that ITCs
protect normal cells from the toxic effects of conventional
therapeutic agents. Another study showed that the combina-
tion of cisplatin with ITCs was selectively effective in cancer
cells [180]. Although the mechanism of selectivity remains to
be elucidated, these observations clearly suggest an urgent
need for clinical testing of the combination therapies of ITCs
with conventional anticancer chemotherapeutics.

ITCs have been shown to offer synergism among
themselves and other anticancer compounds. 3,3'-
diindolylmethane is an important constituent of crucifer-
ous vegetables and exhibits anticancer effects [199]. 3,3'-
diindolylmethane synergizes with SFN leading to enhanced
cell-cycle arrest in colon cancer cells [200]. Among other ITCs,
combination of BITC with SFN or PEITC was more effective
in preventing pancreatic and lung cancer than the individual
treatment [201,202]. Curcumin is a well-known dietary agent
with remarkable anticancer activity [203, 204]. The combina-
tion of curcumin with ITCs caused significant reduction in
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the levels of inflammatory markers. These observations ad-
vocate the possible synergistic or additive effect of curcumin
in combination with ITCs [205, 206]. Several other studies
reenforce the enhanced anticancer effect of PEITC with cur-
cumin through inhibition of prosurvival pathways, such AKT,
EGFR, and NF-kB [207-209]. Epigallocatechin gallate (EGG),
a green tea agent, has significant anticancer potential [210].
The chemopreventive effects of the combination of SFN with
EGG were successfully shown in transgenic model of prostate
cancer through the induction of Nrf2 and AP-1 in Nrf2-
deficient mice [211]. Furthermore, the combined treatment
of SFN with EGG enhanced apoptosis in paclitaxel-resistant
cancer cells by inhibiting hTERT and BCL-2 expression, show-
ing therapeutic anticancer potential [212]. Taken together, it
is clear from the above the studies that ITCs can be used for
combination therapeutics in cancer treatment, especially for
the resistant cancers. The combinations of ITCs with various
anticancer agents and their prime mechanism of action have
been summarized in Table 2.

6 Conclusion

Current epidemiological studies have certain limitations,
such as differential exposure of the populations leading to
misclassification, improper controls, and possibility of recall
bias. Hence, better designed studies are required to establish
the role of ITCs as neutraceuticals for cancer prevention and
treatment. Furthermore, better designed studies along with
detailed mechanistic studies can provide us with an opportu-
nity to use ITCs as the lead for synthesis of more potent and
safe drugs through chemical modifications. It is important to
note that some studies were done using extracts of ITCs from
the vegetables. Few studies have shown that ITCs are suscep-
tible to hydrolytic degradation at high temperatures and basic
conditions [213,214]. Thus, the observations made by extracts
of ITCs could be questionable especially if the extraction pro-
cedure was not appropriate or standard. These observations
require further confirmation using pure forms of ITCs.
Recent studies have revealed many novel cancer targets.
Specifically, targeting these can enhance the efficacy of new
as well as conventional therapies. Hence, it is important to
test the efficacy of ITCs against new targets. Current preclin-
ical evidence presented in the review provides an insight into
potential anticancer mechanisms of action of the ITCs as well
as their selectivity toward the cancer cells. Some clinical stud-
ies have been initiated already for some ITCs. Nonetheless,
further detailed studies are required to establish the safety
and efficacy profiles of these agents based on which they
can be streamlined for further human studies. Based on the
current data, it is evident that ITCs possess highly potential
anticancer activity, but further detailed toxicity and clinical
studies are required to warrant their future clinical benefits.
It should be noted that although we tried to include most of
the published papers related to the objective of this review, it
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is possible that by mistake we may have missed a few papers.
For this we would like to apologize to those authors.

In order to maintain consistency, we converted all the
doses of ITCs into metric units, which initially appeared in
different forms in the literature. The conversion was made
assuming the average weight of mice as 25 g and average
weight of rats as 250 g. We would like to apologize for any
deviation that might have occurred during unit conversion
from the dose used in the actual study. We therefore included
the units reported by the authors as well as values converted
into metric units by us in parenthesis.
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