
nature immunology  volume 11   number 10   october 2010	 889

1Singapore Immunology Network, Agency for Science, Technology & Research, 

Singapore. 2Istituto Clinico Humanitas, Instituto di Ricovero e Cura a Carattere 

Scientifico, Rozzano, Italy. 3Department of Translational Medicine, University of 

Milan, Italy. Correspondence should be addressed to S.K.B. (subhra_biswas@

immunol.a-star.edu.sg) or A.M. (alberto.mantovani@humanitasresearch.it). 

 

Published online 20 September 2010; doi:10.1038/ni.1937

Macrophage plasticity and interaction with 
lymphocyte subsets: cancer as a paradigm
Subhra K Biswas1 & Alberto Mantovani2,3

Plasticity is a hallmark of cells of the myelomonocytic lineage. In response to innate recognition or signals from lymphocyte subsets, 
mononuclear phagocytes undergo adaptive responses. Shaping of monocyte-macrophage function is an essential component of 
resistance to pathogens, tissue damage and repair. The orchestration of myelomonocytic cell function is a key element that links 
inflammation and cancer and provides a paradigm for macrophage plasticity and function. A better understanding of the molecular 
basis of myelomonocytic cell plasticity will open new vistas in immunopathology and therapeutic intervention.

Myelomonocytic cells are an essential component of innate immunity1. 
They originate from bone marrow precursors, and new light has been 
shed on their differentiation2,3. Plasticity and diversity have long been 
known to be hallmarks of the monocyte-macrophage differentiation 
pathway4. Indeed, adaptive responses to environmental signals are now 
recognized for both mature and immature elements in the myelomono-
cytic differentiation pathway5,6.

In addition to acting as a first line of resistance against pathogens (the 
unsung heroes of immunity) and activating adaptive responses, myelo-
monocytic cells undergo reprogramming of their functional proper-
ties in response to signals derived from microbes, damaged tissues, and 
resting or activated lymphocytes. Here we review this adaptive aspect 
of the functional plasticity of myelomonocytic cells with emphasis on 
their bidirectional interaction with lymphocyte subsets and their inte-
gration into adaptive (lymphocyte-mediated) immunity, using cancer 
as a paradigm.

Adaptive responses to innate recognition
One of the hallmarks of adaptive immunity is the ability to mount an 
enhanced and tailored immune response after secondary exposure 
to the same antigen. Likewise, sensing of microbial components by 
macrophages results not only in their functional activation but also in 
the reshaping of subsequent responses to microbial encounters. Thus, 
phagocyte-mediated innate immunity also has a built-in adaptive com-
ponent, and the ability to mount a polarized response is a reflection of 
this7,8. Recognition of microbial moieties such as lipopolysaccharide 
(LPS) has long been known to be a potent activator of macrophages3. 

Recognition of microbial molecules can modify the pattern-recognition 
receptor repertoire of myelomonocytic cells, thus reshaping their sub-
sequent responses. Regulation of the scavenger receptors MARCO and 
dectin-1 by microbial recognition is an example of this, and the change 
in receptor repertoire of cells carrying those receptors profoundly affects 
subsequent macrophage responses in terms of phagocytosis and cytokine 
production7,9.

Under appropriate conditions, exposure to LPS results in hyporespon-
siveness to subsequent challenge at the macrophage and organism level 
(referred to as ‘endotoxin tolerance’)10. Endotoxin tolerance mirrors the 
immunosuppressive phenotype observed in sepsis. Endotoxin tolerance 
might actually be a misnomer, because transcriptomal analysis of mac-
rophages has indicated that endotoxin tolerance represents a case of gene 
reprogramming11. Endotoxin-tolerant macrophages have been found to 
express a set of molecules that overlap those expressed by alternatively 
activated (M2-polarized) macrophages10,12. This includes higher expres-
sion of interleukin 10 (IL-10), arginase 1 and the chemokines CCL17 and 
CCL22. Thus, endotoxin tolerance, far from being a form of unrespon-
siveness, represents an adaptive response with skewing of macrophage 
function to a phenotype of tissue repair and immunoregulatory.

In response to microbe recognition, macrophages produce copious 
amounts of fluid-phase pattern-recognition molecules. These molecules 
act as functional ancestors of antibodies (as so-called ‘ante-antibodies’)13. 
The repertoire of fluid-phase pattern-recognition molecules of myelo-
monocytic cells includes molecules that belong to the collectin fam-
ily (for example, mannose-binding lectin), ficolin family (for example, 
L-, H- and M-ficolin) and pentraxin family (for example, pentraxin 
3)13. Pentraxin 3 represents a paradigm of the interaction between the 
cellular and humoral arms of innate immunity14. This molecule, newly 
produced in mononuclear phagocytes and stored in a granular com-
partment in neutrophils, has a nonredundant role in resistance to such 
pathogens as Aspergillus fumigatus. The effector mechanisms involve 
the recognition of and binding to microbial moieties, activation of the 
complement cascade and opsonization-mediated destruction of patho-
gens13,14. Additionally, by binding to P-selectin, pentraxin 3 attenuates 
the recruitment of neutrophils to sites of inflammation and thereby 
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the heterogeneity and plasticity of macrophage functional states and 
indicate that typical M1 and M2 phenotypes are extremes of a spectrum 
in a galaxy of functional states4,8,35.

Bidirectional macrophage-lymphocyte interactions
Myelomonocytic cells engage in a complex bidirectional interaction 
with adaptive and innate lymphoid cell subsets. We discuss examples 
of such two-way interactions below in the context of macrophage 
polarization.

By producing IFN-γ, TH1 cells can drive classical M1 polarization 
of macrophages (Fig. 1a). These cells are characterized by their ability 
to release large amounts of proinflammatory cytokines (such as IL-12, 
IL-23 and tumor necrosis factor (TNF)), reactive nitrogen intermediates 
and reactive oxygen intermediates, higher expression of major histo-
compatibility complex class II and costimulatory molecules, efficient 
antigen presentation, and microbicidal or tumoricidal activity. M1 mac-
rophages are part of a polarized TH1 response and mediate resistance 
to intracellular pathogens and tumors and elicit tissue-disruptive reac-
tions3,8. M1 macrophages, through their expression of cytokines and 
chemokines such as IL-12, CXCL9 and CXCL10, drive the polarization 
and recruitment of TH1 cells, thereby amplifying a type 1 response23. 
M1 macrophages show a shift in iron homeostasis21 by repressing fer-
roportin and inducing H ferritin, which favors iron sequestration and 
thereby contributes to bacteriostatic effects.

dampens inflammation15. Therefore, pentraxin 3, as well 
as other soluble pattern-recognition molecules produced 
by phagocytes, has an amplification and regulatory role 
in innate immunity13.

Macrophage polarization: a useful oversimplification
Mirroring T helper type 1–T helper type 2 (TH1-TH2) 
polarization, two distinct states of polarized activation for 
macrophages have been recognized: the classically acti-
vated (M1) macrophage phenotype and the alternatively 
activated (M2) macrophage phenotype3,4 (Fig. 1a,b). 
Bacterial moieties such as LPS and the TH1 cytokine 
interferon-γ (IFN-γ) polarize macrophages toward the 
M1 phenotype. In contrast, M2 polarization was origi-
nally discovered as a response to the TH2 cytokine IL-4 
(ref. 16). M2 macrophages show more phagocytic activ-
ity, high expression of scavenging, mannose and galac-
tose receptors, production of ornithine and polyamines 
through the arginase pathway, and a phenotype of low 
expression of IL-12 and high expression of IL-10, the IL-1 
decoy receptor and IL-1RA3,4,8. In general, these cells 
participate in polarized TH2 responses, help with parasite 
clearance, dampen inflammation, promote tissue remod-
eling and tumor progression and have immunoregula-
tory functions. M1 and M2 macrophages have distinct 
chemokinome profiles, with M1 macrophages express-
ing TH1 cell–attracting chemokines such as CXCL9 and 
CXCL10 and M2 macrophages expressing the chemok-
ines CCL17, CCL22 and CCL24 (refs. 8,17). Chemokines 
can also affect macrophage polarization, with CCL2 
and CXCL4 driving macrophages to an M2-like phe-
notype18,19. M1- and M2-polarized macrophages have 
distinct features in terms of the metabolism of iron, folate 
and glucose20–22.

Macrophages can also be polarized into an ‘M2-like’ 
state, which shares some but not all the signature fea-
tures of M2 cells (Fig. 1c,d). For example, various stimuli, 
such as antibody immune complexes together with LPS or IL-1, gluco-
corticoids, transforming growth factor-β (TGF-β) and IL-10, give rise 
to M2-like functional phenotypes that share properties with IL-4- or 
IL-13-activated macrophages (such as high expression of mannose 
receptor, IL-10 and angiogenic factors)23. Variations on the theme of 
M2 polarization are also found in vivo (for example, in the placenta 
and embryo, and during helminth infection, Listeria infection, obesity 
and cancer)24–29. As a result of in vivo pathophysiological conditions 
characterized by a diversity and temporal evolution of activating signals, 
macrophages with intermediate or overlapping phenotypes have been 
observed. For example, transcriptome analysis has shown that mono-
cytes infected with human cytomegalovirus have an atypical M1-M2 
polarization biased toward the M1 phenotype yet express M2 genes such 
as IL1RA, IL10, CCL18 and CCL22 (ref. 30). Similarly, CD11c+ adipose 
tissue macrophages from obese mice have a mixed profile, with upregu-
lation of several M1 and M2 gene transcripts31. A new macrophage phe-
notype has been identified in response to oxidized phospholipids that 
differs distinctly from that of conventional M1 and M2 macrophages32. 
Furthermore, a shift in monocyte-macrophage phenotypes during the 
course of several diseases such as sepsis, cancer and obesity has been 
reported10,33,34. In a Listeria monocytogenes infection model, patrolling 
monocytes with low expression of the marker Gr-1 initially have an 
inflammatory M1 phenotype that subsequently changes to an M2 phe-
notype associated with tissue remodeling28. These studies emphasize 
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Figure 1  The orchestration of macrophage activation and polarization by lymphoid cells.  
(a) M1-polarized macrophages and their crosstalk with TH1 and NK cells. (b) M2 polarization 
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are other characteristic features of M2 macrophages20. Furthermore, 
E-cadherin is a selective marker of M2 macrophages and is linked to 
the mediation of homotypic cellular interactions such as macrophage 
fusion40. In general, M2 cells participate in polarized TH2 responses, 
parasite clearance, the dampening of inflammation, the promotion 
of tissue remodeling, angiogenesis, tumor progression and immuno-
regulatory functions.

Many other cytokines can govern M2 polarization. IL-33 is a cytokine 
of the IL-1 family associated with TH2 and M2 polarization41,42. IL-33 
amplifies IL-13-induced polarization of alveolar macrophages to an M2 
phenotype characterized by the upregulation of YM1, arginase 1, CCL24 
and CCL17, which mediate lung eosinophilia and inflammation42. IL-21 
is another TH2-associated cytokine shown to drive M2 activation of 
macrophages43.

Tissue remodeling has long been associated with M2 polarization4,8. 
IL-4-activated macrophages, as well as cells exposed to IL-10, TGF-β 
and tumor supernatants, selectively express the fibronectin isoform 
MSF (migration-stimulating factor)44. MSF lacks a typical RGD (Arg-
Gly-Asp) motif and is a potent motogen for monocytes; however, its 
role in ontogeny and immunopathology remains to be defined. M2 
macrophages support angiogenesis and lymphangiogenesis by releas-
ing proangiogenic growth factors such as IL-8, VEGFA, VEGFC and 
EGF4,45–47. Macrophages act as ‘bridge cells’ or ‘cellular chaperones’ 
that guide the fusion of endothelial tip cells (vascular anastomosis) and 
facilitate vascular sprouting45,48. These tissue-resident macrophages 
express the receptor tyrosine kinase Tie-2, similar to the proangio-
genic Tie-2-expressing monocytes (TEMs). Interestingly, transcrip-
tome profiling has shown that TEMs share several characteristics 
with M2-polarized cells49. Further studies should determine the exact 
relationship between TEMs and Tie-2-expressing tissue macrophages. 
Macrophages expressing the hyaluronan receptor LYVE-1 have also 
been reported to promote angiogenic as well as lymphaniogenic func-
tions and show M2-like characteristics31.

The interaction of natural killer (NK) cells with mononuclear 
phagocytes goes beyond IFN-γ production; indeed, NK cell cytolytic 
activity is exerted preferentially on M2-polarized macrophages  
(C. Bottino et al., personal communication), which represents a poten-
tial mechanism for further skewing and amplification of the TH1 
response. Macrophages and NK cells are abundant in the placenta. 
Placental macrophages have an M2-like polarized phenotype25, as is 
the case for embryonal macrophages27. The interaction of placental 
macrophages with NK cells results in the induction of proangiogenic 
cytokines (VEGF and IL-8)36. Furthermore, crosstalk between NK cells 
and placental CD14+ myelomonocytic cells induces regulatory T cells 
(Treg cells) in an indoleamine dioxygenase– and TGF-β-dependent 
manner37. Thus, the interaction between NK cells and macrophages 
is probably involved in shaping key aspects of the placenta, such as its 
unique vascularization and the maintenance of immunosuppression 
in the placental microenvironment.

TH2 cell–derived IL-4 and IL-13 direct M2 polarization of mac-
rophages during helminth infection and allergy29,38. Indeed, some 
prototypical mouse M2 markers (such as YM1, FIZZ1 and MGL pro-
teins) were first identified in parasite infection and allergic inflam-
mation29,38,39. IL-4-treated macrophages have a phenotype of low 
expression of IL-12 and high expression of IL-10, the IL-1 decoy 
receptor and IL-1RA and share many of the features characteristic of 
M2-polarized macrophages1,8 (Fig. 1b). Importantly, IL-4-activated 
macrophages express a distinct set of chemokines, including CCL17, 
CCL22 and CCL24. The corresponding chemokine receptors CCR4 and 
CCR3 are present on Treg cells, TH2 cells, eosinophils and basophils23. 
Thus, the release of these chemokines results the recruitment of these 
cells and amplification of polarized TH2 responses. M2 macrophages 
also have distinct metabolic properties. Through the upregulation of 
ferroportin and the downregulation of H ferritin and hemeoxygenase, 
M2 macrophages favor enhanced release of iron, which supports cell 
proliferation21. The expression of folate receptor-β and uptake of folate 
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inducing activation of the transcription factors 
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inhibitory FcγR signaling is initiated by activation 
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In fact, PD-1 ligation induces IL-10 production by monocytes, which 
together with PD-1 inhibits CD4+ T cell responses during such infection  
(Fig. 1d). Thus, the available evidence is consistent with a view of recip-
rocal regulation between macrophages and Treg cells. However, the in 
vivo importance of this interaction remains to be fully ascertained.

IL-17 can mediate the recruitment and activation of mononuclear 
phagocytes in diverse pathologies66–68. In addition, macrophages 
themselves can be an important source of IL-17 (P. Ward, personal 
communication). Neutrophils have been generally considered to be 
major effector cells in IL-17-producing helper T cell (TH17 cell)–
driven responses. The finding that IL-17 affects macrophage func-
tion calls for reappraisal of the role of mononuclear phagocytes in 
TH17-oriented responses.

B cells also can directly regulate macrophage effector functions 
through the interaction of immunoglobulins with macrophage FcγR 
(the Fc receptor for immunoglobulin G) or via cytokine production. 
Macrophages stimulated by immune complexes in the presence of 
MyD88-dependent inflammatory stimuli (IL-1 or LPS) polarize to an 
IL-12loIL-10hi M2-like phenotype69 (Fig. 1d). These cells have a unique 
chemokine profile in that they have high CCL1 expression70. CCR8, 
the cognate receptor of CCL1, is expressed on eosinophils, polarized 
TH2 cells and Treg cells and may actually have a role in the function 
of the last23,70. The binding of immune complexes to activatory FcγR 
on macrophages triggers a pathway dependent on the tyrosine kinase 
Syk, which inhibits not only TLR4 signaling but also type I interferon 
signaling through the upregulation of IL-10 and the negative regulators 
A20, ABIN3 and SOCS3 (ref. 71). Similarly, ligation of the inhibitory 
receptor FcγRIIb on macrophages by immune complexes induces the 
production of prostaglandin E2, which inhibits the expression of TLR4-
triggered inflammatory cytokines such as IL-6 and TNF72.

The B-1 subset of B cells resides mainly in the peritoneum, and B-1 
cells are constitutive producers of IL-10 (ref. 73). B-1 cell–derived IL-10 
downregulates the expression of TNF, IL-1β and CCL3 but upregu-
lates IL-10 expression in LPS-treated macrophages74. Conversely, 
macrophages from B cell–deficient µMT mice have high expression 
of these proinflammatory genes. Together these observations suggest 
that B cells can participate in the orchestration of macrophage function 
via antibodies and immune complexes as well as by the production 
cytokines.

Macrophage plasticity: cancer as a paradigm
Mononuclear phagocytes are a key element of cancer-related inflam-
mation75,76. Cancer serves as a useful paradigm of macrophage diver-
sity and plasticity4,33,77. Here we review how the regulatory pathways 
described above orchestrate the beneficial or pathological yin-yang 
interaction between tumor-associated macrophages (TAMs) and 
tumor cells (Fig. 3). Our emphasis will be on genetic evidence and on 
the general implications of studies on the tumor microenvironment.

Macrophages and related cell types (such as TEMs, the monocyte 
component of myeloid-derived suppressor cells) isolated from estab-
lished metastatic mouse and human tumors generally have an M2-like 
phenotype, consistent with the smoldering nature of cancer-related 
inflammation4,33,49,78. Such macrophages generally have an IL-12loIL-
10hi phenotype, show impaired expression of reactive nitrogen inter-
mediates, less antigen presentation and tumoricidal capacity, and high 
expression of angiogenic factors (VEGF, EGF and semaphorin 4D), 
metalloproteases, cathepsins and the growth arrest–specific protein 
GAS6 (refs. 24,79–82). However, variations on this theme have also 
been noted depending on the tumor type. For example, macrophages 
in a mammary tumor model have a less polarized population with 
neither M1 nor M2 characteristics, although they have a lower abun-

Studies have identified a new class of innate effector cells as a source 
of IL-13. Three newly defined cell types—natural helper cells, nuocytes 
and multipotent progenitor type 2 cells—were identified as the main 
source of IL-13 production in gut-associated lymphoid tissue during 
helminth infection50–52. We are tempted to speculate that these ‘natural’ 
sources of IL-13 contribute to the unusual properties of macrophages 
in the gastrointestinal tract, but this remains to be determined53.

Progress has been made in defining the molecular pathways that 
underlie M2 versus M1 polarization (Fig. 2). IL-4 signals through 
either type I IL-4 receptors (IL-4Rα or IL-4Rγc) or type II IL-4 recep-
tors (IL-4Rα or IL-13Rα1), whereas IL-13 signals only through type II 
IL-4 receptors54. Differences in the expression of type I or type II recep-
tors on different cell types dictate their sensitivity to IL-4 and IL-13. 
Monocytes and macrophages have type I receptors as well as type II 
receptors and respond to both cytokines1,54. However, IL-13Rα2, a 
component of the type II receptor, can act as a decoy for IL-13 and 
dampens monocyte alternative activation55. Signaling downstream 
of the IL-4 receptors involves the activation of various Janus kinases, 
which culminates in the activation of STAT6, a master regulator of M2 
genes39,40,56. STAT6 also induces expression of the transcription factor 
PPAR-γ, which acts in synergy with STAT6 to regulate the expression 
of M2-specific genes and macrophage polarization in obese mice26. 
At an epigenetic level, the histone demethylase JMJD3 regulates tran-
scription of the M2-associated genes Arg1, Chi3l3 (called ‘Ym1’ here) 
and Retnla (called ‘Fizz1’ here) by reciprocal changes in the methyla-
tion of histone H3 Lys4 (H3K4) and histone H3 Lys27 (H3K27)57. 
IL-4 induces upregulation of JMJD3, which then decreases H3K27 
methylation at the promoters of those M2-associated genes to activate 
transcription. In contrast, JMJD3 inhibits the transcription of typical 
M1-associated genes. These data point toward an important role for 
chromatin remodeling in the regulation of macrophage activation58. 
It has been reported that JMJD3 regulates M2 macrophage polariza-
tion by inducing expression of the transcription factor IRF4 (ref. 59). 
Although early studies showed IRF4 to negatively regulate Toll-like 
receptor 4 (TLR4) signaling by binding to the adaptor MyD88, sub-
sequent data have shown IRF4 to be essential for M2 macrophage 
polarization and the expression of M2 signature genes such as Arg1, 
Ym1 and Fizz1.

Treg cells can profoundly affect macrophage function (Fig. 1c). 
Human monocytes cultured in the presence of CD4+CD25+Foxp3+ Treg 
cells differentiate into M2-like macrophages60. In humans, these mac-
rophages are characterized by higher expression of M2 markers such 
as CD163, CD206 and CCL18 and enhanced phagocytic capacity but 
lower expression of HLA-DR and LPS-induced inflammatory cytokines 
(such as TNF, IL-1β, IL-6 and CCL3; Fig. 1c). Treg cell–derived IL-10 is 
involved in the suppression of inflammatory cytokines and the expres-
sion of CD163 and CCL18. Many of the immunosuppressive effects 
of IL-10 are mediated through activation of the transcription factor 
STAT3. IL-10-induced activation of STAT3 results in upregulation of 
SOCS3, which is an inhibitor of cytokine signaling pathways. In mice 
of the severe combined immunodeficiency strain, adoptive transfer 
of syngeneic Treg cells into the peritoneal cavity polarizes the resident 
macrophages into an M2 phenotype similar to that described above61. 
Conversely, M2-polarized macrophages not only drive the differentiation 
of CD25+GITR+Foxp3+ Treg cells62 but also regulate their recruitment 
by releasing CCL22 (ref. 63). In support of those observations, IL-4 
gene therapy in an experimental autoimmune encephalomyelitis mouse 
model has been shown to upregulate CCL22 production by microglial 
cells, resulting in more recruitment of Treg cells and disease protec-
tion64. Upregulation and activation of the receptor PD-1 on mono-
cytes occurs during infection with human immunodeficiency virus65. 
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activated NK cells preferentially kill polarized M2 cells (C. Bottino et 
al., personal communication). Similarly, NKT cells exert anti-tumor 
activity in a neuroblastoma model by killing cancer-promoting 
TAMs96. The elimination of cancer-promoting TAMs by T cells also 
underlies the activity of vaccination against the M2-associated mol-
ecule legumain97. It will be important to ascertain whether targeting 
TAMs has a role in ongoing NK cell–based therapeutic efforts98.

B cells have emerged as additional participants in the regulation of 
macrophage function and cancer-related inflammation. A seminal study 
of the K14-HPV16 mouse model of multistage skin carcinogenesis has 
identified a B cell–mediated pathway of tumor-promoting inflamma-
tion and skewing of macrophage function. The pathway involves T 
cell–dependent autoantibody production by B cells directed against an 
extracellular matrix component, leading to the recruitment of mono-
nuclear phagocytes and skewing of TAMs by immune complexes in 
an M2-like direction99,100. The regulation of macrophage function 
in this case was completely dependent on FcγR and did not involve 
complement. In a different setting, complement components have been 
linked to the recruitment of cancer-promoting myelomonocytic cells in 
transplanted101 as well as primary mouse tumors (J. Lambris, personal 
communication). Cancer-associated fibroblasts isolated from neoplas-
tic skin in a K14-HPV16 carcinogenesis model have an inflammatory 
phenotype that drives macrophage infiltration, angiogenesis and the 
development of transplanted squamous carcinoma102. B cells instruct 
innate immune cells to express IL-1β (via FcγR activation), which drives 
cancer-associated fibroblasts to a tumor-promoting inflammatory 
phenotype. In a transplanted tumor model setting (B16 melanoma), 
transfer of B-1 cells results in substantial induction of a pro-tumoral 

dance of proinflammatory cytokines and less signaling80. 
Moreover, macrophage phenotype can vary in different 
areas of a tumor. In a mammary adenocarcinoma model, 
TAMs with high expression of major histocompatibility 
complex class II can localize to normoxic tumor tissues and 
express M1 markers as well as antiangiogenic chemokines, 
whereas TAMs with low expression of major histocompat-
ibility complex class II were found in hypoxic tumor tis-
sues, preferentially expressed M2 markers and had greater 
proangiogenic functions83. These results caution against the 
overinterpretation of studies on the basis of whole TAM 
populations.

Myelomonocytic cells influence nearly all steps of car-
cinogenesis and tumor progression75,76,81,84. These include 
the following: contribution to genetic alterations and insta-
bility; regulation of senescence85; promotion of angiogen-
esis and lymphangiogenesis46,47,86; suppression of adaptive 
immunity87; interaction with and remodeling of the extra-
cellular matrix; and promotion of invasion and metasta-
sis47,88. In turn, tumor cells shape their interaction with 
macrophages by escaping phagocytosis89 and by promot-
ing an M2-like polarization via chemokines and polarizing 
cytokines (such as CCL2 (ref. 19), CSF1, MSF, TNF, IL-10 
and TGF-β44,75,90). Consistent with those mechanistic stud-
ies, in most but not all human tumors, a greater frequency 
of TAMs is associated with poor prognosis77, as shown by 
Hodgkin’s disease91.

Strong genetic evidence suggests that TH2 cell–derived 
IL-4 and IL-13 can have a key role in orchestrating M2 acti-
vation of macrophages and their protumoral function. In 
a model of spontaneous mammary carcinoma driven by 
the polyoma virus oncoprotein PyMT92, the TH2-derived 
cytokines IL-4 and IL-13 induce M2 polarization of TAMs, 
thereby promoting tumor progression. Indeed, blockade of IL-4 or 
IL-4Rα signaling diminishes lung metastasis, which correlates with 
TAMs’ lower expression of M2 genes (such as Arg1 and Tgfb1) but 
higher expression of M1 genes (such as Il6, Nos2 and Il12a (encod-
ing IL-12p35)). Similarly, in a pancreatic cancer model, IL-4 induces 
large amounts of cathepsin activity in TAMs that then mediates tumor 
growth, angiogenesis and invasion in vivo93. Finally, in the 4T1 mam-
mary carcinoma, NKT cells have been shown to polarize TAMs via 
IL-13 to an M2 phenotype, which supports tumor metastasis56. In fact, 
TAMs from mice deficient in CD1d (which lack NKT cells) or compo-
nents of the IL-13 signaling pathway such as STAT6 and IL-4Rα have 
an M1-polarized tumoricidal phenotype that correlates with resistance 
to metastasis. Treg cells are also frequently found in tumors and are 
associated with poor prognosis. IL-10 derived from tumor-associated 
Treg cells triggers activation of the T cell–inhibitory receptor PD-L1 
on TAMs, which favors the inhibition of tumor-specific T cell immu-
nity87. TAMs themselves produce CCL22, which is a potent chemoat-
tractant for Treg cells in cancer63.

The presence of TH17 cells has been reported in several tumors66,94,95. 
The IL-17 pathway can have pro- or anti-tumor effects in different set-
tings. In ovarian carcinoma, CD4+ T cell–derived IL-17 can mediate the 
recruitment of myeloid cells into tumors and enhance tumor growth66. 
However, other studies have indicated that IL-17 not only mediates the 
recruitment of TAMs but also enhances their pro-tumoral properties 
through an IL-6–STAT3 circuit95. Thus, myelomonocytic cells are prob-
ably a key component of the yin-yang role of TH17 cells in cancer.

There is little information on the interaction of NK cells with myelo-
monocytic cells in the tumor microenvironment. Results suggest that 
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Concluding remarks
Plasticity and diversity are long-recognized hallmarks of mononu-
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